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My research covers three different aspects of commutative algebra, all with strong connections
to geometry or topology. In a broad context, I study the category of finitely generated modules
over graded and local Noetherian rings.

My current research goals are the following: The first is to compute higher K-groups of local
Cohen-Macaulay rings, utilizing topological and categorical tools; the second is to understand
Lefschetz properties for graded modules of finite length, through applications of algebraic geometry;
and the third is to understand the algebraic structure of Macaulay duals of generic hyperplane
arrangements. While these areas of commutative algebra may seem disparate, I want to stress that
an underlying theme of my work is the development of new techniques that produce previously
unknown examples from the tools that have revolutionized algebra and geometry. For example,
in [15] I give a structure for G1(R), the first Quillen K-group of the category of finitely generated
R-modules, for a large class of local Cohen-Macaulay rings, as well as providing numerous explicit
computations of G1(R).

My research also illuminates a connection between Lefschetz properties in commutative algebra
and vector bundles in algebraic geometry. Namely, in [14], we study syzygy bundles and their
generic splitting types in an effort to give a large class of non-cyclic finite length modules which
have the Weak Lefschetz Property, as well as generalizing classical results. Continuing this trend,
I discuss how to lay the groundwork in [16] to study Lefschetz properties for a class of finite length
modules that, when cyclic, are Artinian Gorenstein algebras, as well as how to study their syzygy
bundles. Lastly, in [12], we explore the algebraic structure of the Macaulay dual of a generic
hyperplane arrangement in Pr.

1. Algebraic K-Theory for Cohen-Macaulay Rings

Throughout this section (R,m, k) is a local Noetherian ring with unique maximal ideal m, and
algebraically closed residue field k := R/m of characteristic not two. Let C denote the category of
finitely generated R-modules.

In [34], the ith Quillen K-group of C, denoted by KQ
i (C), is defined to be the abelian group

πi+1(BQC, 0), where QC is Quillen’s Q-construction, BQC is the classifying space of QC, 0 is a

fixed zero object, and πi+1 denotes the taking of a homotopy group. Write Gi(R) := KQ
i (C) and

call Gi(R) the ith G-group of R. While this definition is quite useful, it is very difficult to parse,
and the groups Gi(R) are hard to compute. In fact, Gi(Z) is not known for all i and a significant
work was spent in [25] to show G3(Z) ∼= Z/48Z. In the spirit of calculating G-groups, the following
is shown in [15]:

Theorem 1 (Theorem 3, [15]). Let (R,m, k) be a local Cohen-Macaulay ring. Assume R is a
Henselian k-algebra that admits a dualizing module and is also an isolated singularity. If the
category of maximal Cohen-Macaulay R-modules, mcmR, admits an n-cluster tilting object L
such that EndR(L)op has finite global dimension, then there is a subgroup Ξ of AutR(L)ab, the
abelianization of AutR(L)ab, and a free abelian group H such that

G1(R) ∼= H⊕AutR(L)ab/Ξ
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Theorem 1 generalizes (Theorem 2.12, [20]) and expands on work from [31, 32]. Theorem 1
contains several technical terms, but it should be stressed this broadens its applications, and proof
of concept of this is provided by computing G1(R) for several families of singularities in [15]. An
explicit example of when all conditions of Theorem 1 are satisfied is when R is a complete local
Noetherian ring of finite Cohen-Macaulay type (Theorem 6, [26]), and all complete local Noetherian
rings of finite Cohen-Macaulay type in dimension one are classified (Chapter 4, [27]).

While the definition of an n-cluster tilting object is central to the statement of Theorem 1, it is
very technical. Important examples of when mcmR admits an n-cluster-tilting come from certain
reduced hypersurface singularities in dimension one and three, where results from [9] and [22]
show that an n-cluster tilting object not only exists, but its endomorphism ring has finite global
dimension. In [15], G1(R) is computed for these classes of hypersurface singularities.

In [15], for all positive-dimensional cases in which G1(R) is fully computed, it is the case that

G1(R) contains R
∗

(where R is the integral closure of R in its total quotient ring) as a direct
summand. This leads to the following:

Question 1. If R satisfies all conditions of Theorem 1, doesG1(R) contain R
∗

as a direct summand?

Even more explicitly, with notation as in Theorem 1, is AutR(L)ab/Ξ ∼= R
∗
?

Answering Question 1 would compute G1(R) explicitly for a large class of local Cohen-Macaulay
rings, as well as providing techniques for the possible computation of higher G-groups.

Goal 1. Our current main interest is to show that if R satisfies all the hypotheses of Theorem 1,
then G1(R) ∼= H⊕R∗. If this proves to be too difficult, we can concentrate on the case when R is
complete and of finite Cohen-Macaulay type, noting [15] provides several examples of computation
in this direction.

To accomplish this goal, I aim to use ideas from [13] that involve applications of derived homo-
logical algebra and homotopy theory to algebraic K-theory. In particular, if A is the category of
finitely generated left modules over EndR(L)op, and it can be shown there is a Serre subcategory
B ⊆ A, such that the quotient category A/B is equivalent to the category of finitely generated
modules over R, Quillen’s Localization Theorem (Theorem 5, [34]) may be applied to obtain a long
exact sequence of G-groups which can further be analyzed with the intent of answering Question
1.

Throughout, we will want to see connections our work has with algebraic geometry, and we are
curious about the recent work in this direction:

Question 2. We ask broadly if we can also use tools from geometry to aid in the computation of
Gi(R) for i ≥ 2? For instance, there are approaches to the computations of higher K-groups that
are largely geometric (see [29], for example), and we would like to understand how to apply these
results in our setting.

2. The Weak Lefschetz Property for Artinian Modules

Throughout this section, let K be an algebraically closed field, S = K[x0, . . . , xr], and m the
ideal (x0, . . . , xr). Any S-module considered will be finitely generated. In particular, any Artinian
S-module has finite length.

An Artinian S-module N =
⊕

j∈ZNj has the Weak Lefschetz Property (WLP) if given a general
linear form `, the K-linear map ×` : Nj −→ Nj+1 has maximal rank for all j. The following
question is the leading motivation for this project:

Question 3. Which Artinian S-modules have the Weak Lefschetz Property?

This a broad question, and is unresolved even in codimension three for Artinian Gorenstein
algebras. The most complete result to date is (Theorem 2.3, [19]), which says that if K has
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characteristic zero, r = 2, and N = S/I, with I a complete intersection, then N has the WLP.
The perspective in [14] was that N need not be cyclic, and the main result of [19] was not only
generalized, but the proof is self-contained. Noting that in [19], the proof of the main theorem
requires results from [36]. Our result is the following:

Theorem 2 (Theorem 3.7, [14]). Suppose K has characteristic zero. If E is a rank two vector
bundle on P2, then H1

∗
(
P2, E

)
has the WLP.

For ease, set M := H1
∗
(
P2, E

)
, with E as in Theorem 2. As observed in [14], the minimal

free resolution of M played an important role in determining if M had the WLP. In particular,
the minimal free resolution of M is given by the Buchsbaum-Rim complex, and this minimal
free resolution is symmetric, as are minimal free resolutions of Gorenstein algebras. In [16], this
is explored further by studying Symmetrically Gorenstein modules. Symmetrically Gorenstein
modules were first defined and studied in [24], and are generalizations of Artinian Gorenstein
algebras.

Definition 1 (Definition 3.2, [24]). A graded Artinian S-module M is Symmetrically Gorenstein
if there is an isomorphism τ : N −→ HomK(N,K)(−s) such that τ = ±HomK(τ,K)(−s).

The module H1
∗
(
P2, E

)
from Theorem 2 is an example of a Symmetrically Gorenstein module

in codimension three, as noted in (Proposition 3.9, [16]). The initial interest in showing M was
Symmetrically Gorenstein was to generalize (Theorem 2.3, [19]), however, this property turned out
to be very useful in allowing me to generalize geometric results from [4] on the non-Lefschetz locus
of an Artinian S-module, as well as providing interesting connections with Artinian level modules
from [3]. For example, in [16], the following is shown:

Theorem 3 (Corollary 5.8, [16]). Suppose K has characteristic zero and N is a nonnegatively
graded level S-module. Then the non-Lefschetz locus of N can be defined by two degrees.

Here, a level S-module is a nonnegatively graded Artinian S-module which is assumed to be
shifted to be of the form N = N0 ⊕ · · · ⊕ Nc, for which Soc(N) = (0 :N m) = Nc. The non-
Lefschetz locus of N , denoted by LN , is a scheme attached to N , which, as a set, is a union of
LN,j , for 0 ≤ j ≤ c, with LN,j := {[`] ∈ P(S1)| × ` : Nj −→ Nj+1 does not have maximal rank}
(where, if ` = a0x0 + · · · arxr, [`] = [a0 : · · · : ar] ∈ Pr). The proof of Theorem 3 also required the
generalization of the crucial result (Proposition 2.1, [28]), as well as generalizations of important
results from [3].

Moreover, utilizing the groundwork that has been laid, it is shown that the non-Lefschetz locus
of a nonnegatively-graded Symmetrically Gorenstein S-module can be defined by a single degree
(Proposition 5.11, [16]), generalizing (Corollary 2.7, [4]).

Goal 2. Study the WLP for classes of Symmetrically Gorenstein S-modules utilizing the framework
and techniques that were laid out in [16]. Generalize results from [14] to higher codimension.

The plan to accomplish Goal 2 is to provide an analysis of syzygy bundles (which are sheafi-
fications of syzygies of a module) of Symmetrically Gorenstein S-modules with the goal of using
this analysis to characterize when certain classes of Symmetrically Gorenstein S-modules have the
WLP. Significant information about the WLP can be gained from studying syzygy bundles, as can
be seen in [1, 6, 8, 10, 11, 19]. Moreover, in [14], the importance of the syzygy bundle is again rec-
ognized for non-cyclic S-modules in codimension three, highlighting the use of the Grauert-Mülich
theorem on the generic splitting type of a semistable bundle of rank two on P2 (Corollary 2, pg.
206, [33]). Moreover, we fully determine the generic splitting type for unstable syzygy bundles
of rank two on P2 in [14] (see Proposition 3.5, [14]), which is something that had not been given
attention to previously in this context.
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I am also interested in expanding applications of the the aforementioned theorem of Grauert-
Mülich, noting it applies more generally to semistable rank r bundles on Pr (Corollary 1, pg.
205, [33]). In particular, there are only finitely many generic splitting types for a semistable bundle
of rank r on Pr. To make use of this, the semistability of a bundle may need to be determined,
but in this situation, a theorem of Bonhorst and Spindler (Theorem 2.7, [5]) can be used, as well
as computational methods from [23].

Moreover, this analysis of the syzygy bundle will provide insight into generalizing results on the
non-Lefschetz locus from [4] (see, for example, the proof of Theorem 5.3 in [4]). In particular,
insight into geometric objects such as the non-Lefschetz locus for non-cyclic Artinian modules will
allow for comparison to the structure of the non-Lefschetz locus for Artinian algebras, and insight
into when Artinian algebras have the WLP.

3. Duals of Hyperplane Arrangements

Let K be an algebraically closed field of characteristic zero and S = K[x0, . . . , xr]. A hyperplane
arrangement is a finite union of hyperplanes in Pr. Given a hyperplane arrangement A, denote
its defining polynomial by fA ∈ S, noting that fA is a product of the linear forms that define A.
Hyperplane arrangements are well-studied objects, and have deep connections to algebra, combi-
natorics, and topology (see [30, 35]). The following class of hyperplane arrangements is of interest
to us:

Definition 2. A hyperplane arrangement A in Pr is called generic if given a subcollection A′ ⊆ A
with |A′| = p,

(a) the linear forms that define the hyperplanes in A′ are linearly independent if p ≤ r + 1;
(b) the intersection of the hyperplanes in A′ is empty if p > r + 1.

Set R = K[X0, . . . , Xr] and let R act on S by partial differentiation. Given f ∈ S, write f⊥

for the ideal of R given by AnnR(f). For any f ∈ S, it is well-known that the quotient f⊥ is
an Artinian Gorenstein ideal (that is, the quotient R/f⊥ is an Artinian Gorenstein algebra). A
natural question to ask is when do the ideals f⊥ define complete intersections? This leads to the
main question:

Question 4. Given a generic hyperplane arrangement A, determine conditions on A so that f⊥A is
a complete intersection?

Techniques for studying the structure of f⊥ are usually developed for specific classes of forms,
so are not broadly applicable. In fact, in (Ch. 9, Section L., [21]), it is noted that the problem of
determining conditions on f so that f⊥ is a complete intersection is quite open. One example of
answering this question comes, albeit indirectly, from [7], where annihilators of forms called direct
sums are studied. We note direct sums vary significantly from products of linear forms (Proposition
2.12, [7]).

A natural place to begin to answer Question 4 is to give a lower bound on α(f⊥A ), the minimal

degree of a polynomial in f⊥A . Utilizing results on star configurations from [17], the following is
shown:

Theorem 4. (Proposition 4.10, [12]) If A is a generic hyperplane arrangement in Pr with at least
r + 1 hyperplanes, then α(f⊥A ) ≥ min {|A| − r + 1, r + 1}

Using the above, we obtain a partial answer to Question 4:

Corollary 1. (Corollary 4.11, [12]) If A is a generic hyperplane arrangement in Pr with at least
r + 2 hyperplanes, and f⊥A is a complete intersection, then |A| ≥ r(r + 1)
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Note when r = 2, Corollary 1 fails to give any information about whether or not f⊥A is a complete
intersection. We investigate this specific case below.

Example 1. (Theorem 5.1(*), [12])
Let K = C, r = 2, and ω = exp(πi3 ). If fA = xyz(x+ y+ z)(x+ωy+ω)(x+ωy+ωz). Then f⊥A

contains X3 − Y 3, X3 −Z3, XY 2 + Y Z2 +ZX2, X2Y + Y 2Z +XZ2. As f⊥A contains no quadrics,

these are part of a minimal generating set for f⊥A , so that f⊥A is not a complete intersection.

As the above example is not a complete intersection, this leads to further investigate this situation
and to the next goal of this project:

Goal 3. Show that when r = 2, K = C, and |A| = 6, f⊥A , is not a complete intersection by
classifying all such generic hyperplane arrangements in P2. So far, there is no rigorous proof of
this, but there is a numerical and computational classification from the use of macaulay2 [18] and
bertini [2] (see Theorem 5.1(*) in [12]).

There is also interesting connection with Waring Rank from [7]: The Waring rank of f ∈ Sd is
the smallest s for which f = `d1 + · · ·+ `ds , with the `i ∈ S1 pairwise linearly independent. With A
as in Example 1, the ideal generated by the four cubics in Example 1 defines six distinct points in
P2, so that by the well-known Apolarity Lemma (see [21] for a proof), fA has Waring rank six. In
fact, fA is a generic example with minimal Waring Rank, which is often unexpected.

In this direction, we also have the following corollary from Theorem 4:

Corollary 2. If A is a generic hyperplane arrangement in Pr with at least r + 1 hyperplanes, the

Waring rank of fA is at least min
{(|A|

r

)
,
(
2r
r

)
]
}

.
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